3.31 \(\int \frac{(e x)^m (a+b x^2)^2 (A+B x^2)}{(c+d x^2)^2} \, dx\)

Optimal. Leaf size=246 \[ -\frac{(e x)^{m+1} (b c-a d) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{d x^2}{c}\right ) (a d (A d (1-m)+B c (m+1))+b c (A d (m+3)-B c (m+5)))}{2 c^2 d^3 e (m+1)}-\frac{b (e x)^{m+1} (2 a d (A d (m+1)-B c (m+3))-b c (A d (m+3)-B c (m+5)))}{2 c d^3 e (m+1)}-\frac{\left (a+b x^2\right )^2 (e x)^{m+1} (B c-A d)}{2 c d e \left (c+d x^2\right )}-\frac{b^2 (e x)^{m+3} (A d (m+3)-B c (m+5))}{2 c d^2 e^3 (m+3)} \]

[Out]

-(b*(2*a*d*(A*d*(1 + m) - B*c*(3 + m)) - b*c*(A*d*(3 + m) - B*c*(5 + m)))*(e*x)^(1 + m))/(2*c*d^3*e*(1 + m)) -
 (b^2*(A*d*(3 + m) - B*c*(5 + m))*(e*x)^(3 + m))/(2*c*d^2*e^3*(3 + m)) - ((B*c - A*d)*(e*x)^(1 + m)*(a + b*x^2
)^2)/(2*c*d*e*(c + d*x^2)) - ((b*c - a*d)*(a*d*(A*d*(1 - m) + B*c*(1 + m)) + b*c*(A*d*(3 + m) - B*c*(5 + m)))*
(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)])/(2*c^2*d^3*e*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.404804, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {577, 570, 364} \[ -\frac{(e x)^{m+1} (b c-a d) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{d x^2}{c}\right ) (a d (A d (1-m)+B c (m+1))+b c (A d (m+3)-B c (m+5)))}{2 c^2 d^3 e (m+1)}-\frac{b (e x)^{m+1} (2 a d (A d (m+1)-B c (m+3))-b c (A d (m+3)-B c (m+5)))}{2 c d^3 e (m+1)}-\frac{\left (a+b x^2\right )^2 (e x)^{m+1} (B c-A d)}{2 c d e \left (c+d x^2\right )}-\frac{b^2 (e x)^{m+3} (A d (m+3)-B c (m+5))}{2 c d^2 e^3 (m+3)} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(a + b*x^2)^2*(A + B*x^2))/(c + d*x^2)^2,x]

[Out]

-(b*(2*a*d*(A*d*(1 + m) - B*c*(3 + m)) - b*c*(A*d*(3 + m) - B*c*(5 + m)))*(e*x)^(1 + m))/(2*c*d^3*e*(1 + m)) -
 (b^2*(A*d*(3 + m) - B*c*(5 + m))*(e*x)^(3 + m))/(2*c*d^2*e^3*(3 + m)) - ((B*c - A*d)*(e*x)^(1 + m)*(a + b*x^2
)^2)/(2*c*d*e*(c + d*x^2)) - ((b*c - a*d)*(a*d*(A*d*(1 - m) + B*c*(1 + m)) + b*c*(A*d*(3 + m) - B*c*(5 + m)))*
(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)])/(2*c^2*d^3*e*(1 + m))

Rule 577

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> -Simp[((b*e - a*f)*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*g*n*(p + 1)), x] + Dist[
1/(a*b*n*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*(m
+ 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] &&
 IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])

Rule 570

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^
(r_.), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, m, n}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(e x)^m \left (a+b x^2\right )^2 \left (A+B x^2\right )}{\left (c+d x^2\right )^2} \, dx &=-\frac{(B c-A d) (e x)^{1+m} \left (a+b x^2\right )^2}{2 c d e \left (c+d x^2\right )}-\frac{\int \frac{(e x)^m \left (a+b x^2\right ) \left (-a (A d (1-m)+B c (1+m))+b (A d (3+m)-B c (5+m)) x^2\right )}{c+d x^2} \, dx}{2 c d}\\ &=-\frac{(B c-A d) (e x)^{1+m} \left (a+b x^2\right )^2}{2 c d e \left (c+d x^2\right )}-\frac{\int \left (\frac{b (2 a d (A d (1+m)-B c (3+m))-b c (A d (3+m)-B c (5+m))) (e x)^m}{d^2}+\frac{b^2 (A d (3+m)-B c (5+m)) (e x)^{2+m}}{d e^2}+\frac{\left (-5 b^2 B c^3+3 A b^2 c^2 d+6 a b B c^2 d-2 a A b c d^2-a^2 B c d^2-a^2 A d^3-b^2 B c^3 m+A b^2 c^2 d m+2 a b B c^2 d m-2 a A b c d^2 m-a^2 B c d^2 m+a^2 A d^3 m\right ) (e x)^m}{d^2 \left (c+d x^2\right )}\right ) \, dx}{2 c d}\\ &=-\frac{b (2 a d (A d (1+m)-B c (3+m))-b c (A d (3+m)-B c (5+m))) (e x)^{1+m}}{2 c d^3 e (1+m)}-\frac{b^2 (A d (3+m)-B c (5+m)) (e x)^{3+m}}{2 c d^2 e^3 (3+m)}-\frac{(B c-A d) (e x)^{1+m} \left (a+b x^2\right )^2}{2 c d e \left (c+d x^2\right )}-\frac{((b c-a d) (a d (A d (1-m)+B c (1+m))+b c (A d (3+m)-B c (5+m)))) \int \frac{(e x)^m}{c+d x^2} \, dx}{2 c d^3}\\ &=-\frac{b (2 a d (A d (1+m)-B c (3+m))-b c (A d (3+m)-B c (5+m))) (e x)^{1+m}}{2 c d^3 e (1+m)}-\frac{b^2 (A d (3+m)-B c (5+m)) (e x)^{3+m}}{2 c d^2 e^3 (3+m)}-\frac{(B c-A d) (e x)^{1+m} \left (a+b x^2\right )^2}{2 c d e \left (c+d x^2\right )}-\frac{(b c-a d) (a d (A d (1-m)+B c (1+m))+b c (A d (3+m)-B c (5+m))) (e x)^{1+m} \, _2F_1\left (1,\frac{1+m}{2};\frac{3+m}{2};-\frac{d x^2}{c}\right )}{2 c^2 d^3 e (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.223013, size = 158, normalized size = 0.64 \[ \frac{x (e x)^m \left (-\frac{(b c-a d)^2 (B c-A d) \, _2F_1\left (2,\frac{m+1}{2};\frac{m+3}{2};-\frac{d x^2}{c}\right )}{c^2 (m+1)}+\frac{(b c-a d) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{d x^2}{c}\right ) (-a B d-2 A b d+3 b B c)}{c (m+1)}+\frac{b (2 a B d+A b d-2 b B c)}{m+1}+\frac{b^2 B d x^2}{m+3}\right )}{d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(a + b*x^2)^2*(A + B*x^2))/(c + d*x^2)^2,x]

[Out]

(x*(e*x)^m*((b*(-2*b*B*c + A*b*d + 2*a*B*d))/(1 + m) + (b^2*B*d*x^2)/(3 + m) + ((b*c - a*d)*(3*b*B*c - 2*A*b*d
 - a*B*d)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)])/(c*(1 + m)) - ((b*c - a*d)^2*(B*c - A*d)*H
ypergeometric2F1[2, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)])/(c^2*(1 + m))))/d^3

________________________________________________________________________________________

Maple [F]  time = 0.055, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( B{x}^{2}+A \right ) \left ( b{x}^{2}+a \right ) ^{2} \left ( ex \right ) ^{m}}{ \left ( d{x}^{2}+c \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(b*x^2+a)^2*(B*x^2+A)/(d*x^2+c)^2,x)

[Out]

int((e*x)^m*(b*x^2+a)^2*(B*x^2+A)/(d*x^2+c)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (b x^{2} + a\right )}^{2} \left (e x\right )^{m}}{{\left (d x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^2*(B*x^2+A)/(d*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)^2*(e*x)^m/(d*x^2 + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B b^{2} x^{6} +{\left (2 \, B a b + A b^{2}\right )} x^{4} + A a^{2} +{\left (B a^{2} + 2 \, A a b\right )} x^{2}\right )} \left (e x\right )^{m}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^2*(B*x^2+A)/(d*x^2+c)^2,x, algorithm="fricas")

[Out]

integral((B*b^2*x^6 + (2*B*a*b + A*b^2)*x^4 + A*a^2 + (B*a^2 + 2*A*a*b)*x^2)*(e*x)^m/(d^2*x^4 + 2*c*d*x^2 + c^
2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e x\right )^{m} \left (A + B x^{2}\right ) \left (a + b x^{2}\right )^{2}}{\left (c + d x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(b*x**2+a)**2*(B*x**2+A)/(d*x**2+c)**2,x)

[Out]

Integral((e*x)**m*(A + B*x**2)*(a + b*x**2)**2/(c + d*x**2)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (b x^{2} + a\right )}^{2} \left (e x\right )^{m}}{{\left (d x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^2*(B*x^2+A)/(d*x^2+c)^2,x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)^2*(e*x)^m/(d*x^2 + c)^2, x)